

Version 3

Scalable Message Oriented Middleware for
 Distributed Computing

Technical Notes

XIPC Technical Notes 1

CONTENTS

 THE X♦ IPC IDLE USER DETECTION MECHANISM

 X♦ IPC ASYNCHRONOUS OPERATIONS WITH FILE DESCRIPTORS ON UNIX

 X♦ IPC ASYNCHRONOUS OPERATIONS WITH EVENT OBJECTS ON WIN32

04/11/02
Revision No: 11

XIPC Technical Notes 2

THE X♦ IPC IDLE USER DETECTION MECHANISM

TABLE OF CONTENTS

1. THE X♦ IPC IDLE USER DETECTION MECHANISM... 3
1.1 Background... 3
1.2 The X♦ IPC Specific Problem .. 3

1.3 The X♦ IPC Solution: The Idle User Detection Mechanism.................................... 3

2. CONFIGURATION AND PROGRAMMING CONCEPTS..................................... 4
2.1 The xipcidld Daemon Program .. 4

2.1.1 Starting xipcidld ... 4

2.1.2 Stopping xipcidld.. 4

2.1.3 Registering an Instance .. 4
2.2 The XipcIdleWatch() Function.. 5

2.2.1 Log Files ... 5

3. AN EXAMPLE OF USING THE X♦ IPC IDLE USER DETECTION
MECHANISM.. 6

3.1.1 Starting xipcidld ... 6

3.1.2 Sample User Program .. 6
3.2 Summary of Idle User Enhancements in X♦ IPC Version 3.0.1 7

04/11/02
Revision No: 11

XIPC Technical Notes 3

The X♦ IPC Idle User Detection Mechanism

1.1 Background

Computer applications operating in the context of a client/server architecture typically
require that the client and server components be kept abreast of each other's respective
status. A primary motivation for this requirement is to allow the server program to
recycle server resources whenever a participating client "goes away."
While this requirement is most evident within networked applications (i.e., where clients
and servers are physically separated by a network), it is similarly a concern in situations
where the processes are operating on a single platform. Nevertheless, the penalties for not
addressing this requirement properly within a distributed environment are more severe
than within a stand-alone environment and, if left unaddressed, such distributed
applications can exhibit one or both of the following problems:

❏ Network sessions are kept open after the application's need for them has ended.

❏ Server operating system processes and other resources are held onto after they
are no longer needed.

Distributed applications involving "not so intelligent" client platforms (e.g.,
MS/Windows), are particularly susceptible to this problem. Over time, as network and
operating resources are consumed, and left idle, such a problem can bring a distributed
application to its knees.

1.2 The X♦ IPC Specific Problem

This problem can manifest itself when working with X IPC in that it is possible for X IPC
user programs to hold network, operating system and X IPC instance resources following
ungraceful user program termination.
An example of this within a network environment is when a user of an X IPC -based
distributed application "powers down" an MS/Windows machine without first exiting the
applications being run (i.e., without first logging out of the X IPC instances being used by
the application). This modus operandi is more often the rule than the exception. The
result, within an X IPC network environment, is that not all X IPC, system and network
resources are released.

1.3 The X♦ IPC Solution: The Idle User Detection Mechanism

The X IPC Idle User Detection Mechanism makes it possible for X IPC to automatically
monitor and detect idle users within an instance and to cause the release of any resources
held by such users. In order for X IPC users within an instance to be subject to such
monitoring and to potential resource recovery, two prerequisites must be satisfied:

❏ The instance involved must be actively monitored against idle user activity, and

04/11/02
Revision No: 11

❏ Each instance user must explicitly request that it be monitored against idle
activity within that instance.

XIPC Technical Notes 4

If either of these conditions is not met, then users will not be subject to any form of idle
usage monitoring. This provides maximum flexibility from both the user program and the
instance perspective for controlling the operation of the idle user detection mechanism.
2. CONFIGURATION AND PROGRAMMING CONCEPTS
Operation of the idle-user detection mechanism is controlled by two components: the
xipcidld daemon program and the XipcIdleWatch() function call.

2.1 The xipcidld Daemon Program
The xipcidld daemon program is used for monitoring user activity within an X IPC
instance so as to detect the presence of idle users within that instance. Resources held by
such users are forcibly recovered. A user is determined to be idle within an instance when
it has not executed an X IPC operation against the instance, over a certain period of time.
This time period is referred to as the idle-interval of that instance. Each instance is
assigned its own idle-interval value.

2.1.1 STARTING xipcidld

The xipcidld daemon is started on the platform that serves the instance via the
xipcinit command.

2.1.2 STOPPING xipcidld

The xipcidld daemon is stopped via the xipcterm command.

2.1.3 REGISTERING AN INSTANCE

The [IDLE_USER] section must be defined in the configuration file if the instance is to
be monitored with xipcidld at xipcstart. If [IDLE_USER] is not defined, the
instance will not be monitored.
The [IDLE_USER] section may specify values for any of the following parameters; if
the parameter is omitted, its default value is used:

Parameter Description Default Value
INTERVAL How often an instance should be monitored for

idle users, such as 30m, 30s, 10h.
30m

LOGFILENAM
E

The name of a file to log idle information for
that instance.

No log

ACTION The action the xipcidld should take when a
user is found to be idle.
The options are: NOACTION, ABORT and
UserDefinedExitProgram.

ABORT

It is possible with the current version of X IPC to monitor multiple X IPC instances on a
single platform. (Previously, only a single instance per platform could be specified in the

04/11/02
Revision No: 11

XIPC Technical Notes 5

xipc.env file for idle user monitoring; this option is still supported for backward
compatibility.)

2.2 The XipcIdleWatch() Function
By default, users logging into an X IPC instance that is monitoring against idle users, are
not subject to the monitoring. Users wishing to have their activity within the instance
monitored must notify that instance of such desire. This is accomplished via the
XipcIdleWatch() function call, which is fully defined in the the X IPC Reference
Manual.
The XipcIdleWatch() function call can be used to toggle the user's state within an
instance - between being watched and not being watched. It is additionally possible for a
user to notify an instance that it is still alive even though it has not recently performed
X IPC operations within the instance. This too is accomplished using the
XipcIdleWatch() function.
The XipcIdleWatch() function takes one argument, WatchOption, that can have
one of three values:

❏ The XIPC_IDLEWATCH_START value notifies the instance to start monitoring
the calling user as part of the instance's idle user detection activity.

❏ The XIPC_IDLEWATCH_STOP value notifies the instance to stop monitoring
the calling user as part of the instance's idle user detection activity.

❏ The XIPC_IDLEWATCH_MARK argument value notifies the instance that the
calling user is still alive. Calling XipcIdleWatch() with this option is a
means of issuing a "heartbeat" to the instance. This saves the user from
detection during the current idle-period cycle. Another way of viewing this
option is as if the user is executing a null X IPC operation within the instance.

All calls to XipcIdleWatch() are ignored if the instance is not currently watching for
idle users.

2.2.1 LOG FILES

General xipcidld information and any general errors are logged to the
xipcidld.log file. This file is located within the X IPC platform log directory. (See
the X IPC User Guide, section 3.4.)
Specific log errors for an instance are logged to the user-specified log file, if specified.
Note that if multiple instances are being monitored, each instance should have a different
log file.

04/11/02
Revision No: 11

XIPC Technical Notes 6

3. AN EXAMPLE OF USING THE X♦ IPC IDLE USER DETECTION
MECHANISM

3.1.1 STARTING xipcidld
xipcidld is one of the default processes started by xipcinit. Refer to the X IPC
Reference Manual for a discussion of how to start the X IPC platform without xipcidld .
The .cfg file of the instance to be monitored must contain an [IDLE_USER] section.
If the default parameter values are not to be used, then paramtere values for monitoring
the instance must be specified in this section. If the default parameter values are to be
used, the [IDLE_USER] section can be left empty.

3.1.2 SAMPLE USER PROGRAM
The following sample user program demonstrates the usage of the XipcIdleWatch()
function for controlling the user's susceptibility to being monitored:

#include <xipc.h>

VOID
main()
{
 /*
 * Login to the "example" instance. By default, the user will initially
 * not be susceptible to the instance's idle-user monitoring.
 */

 XipcLogin("@example", ...);
 ...
 ...
 /*
 * Start to be monitored.
 */

 XipcIdleWatch(XIPC_IDLEWATCH_START);

 ...
 ...

 /*
 * It's been some time since executing an XIPC operation against the
 * "example" instance. Let it know that I'm still alive.
 */

 XipcIdleWatch(XIPC_IDLEWATCH_MARK);

 ...

 /*
 * Stop being monitored.
 */

 XipcIdleWatch(XIPC_IDLEWATCH_STOP);

 XipcLogout ();
}

04/11/02
Revision No: 11

XIPC Technical Notes 7

3.2 Summary of Idle User Enhancements in X♦ IPC Version 3.0.1
♦ The parameter MAX_INSTANCES can now be included in the [xipcidld] section

of the xipc.env file. This specifies the maximum number of instances that may
be simultaneously monitored for idle users. The default value is 10.

♦ The xipcidld is now started as one of the default daemon/service programs by
XIPCINIT.

♦ It is now possible to monitor multiple X IPC instances on a single platform. Previously,
only a single instance per platform could be specified for idle user monitoring; this
option is still supported for backward compatibility. Each instance must have an
[IDLE_USER] section in its .cfg file, indicating to the xipcidld daemon
program that the instance is to be monitored for idle users.

♦ The INSTANCENAME parameter of the [xipcidld] section of the xipc.env file
no longer has a default value. (It had been the value of the XIPC environment
variable.) The preferred way to specify idle user monitoring for an instance is to by
including an [IDLE_USER] section in the instance's .cfg file, rather than by
specifying the instance name in the xipc.env file's[xipcidld] section.

04/11/02
Revision No: 11

XIPC Technical Notes 8

USING I/O DESCRIPTORS
FOR ASYNCHRONOUS OPERATIONS

ON UNIX

TABLE OF CONTENTS

1. X♦ IPC ASYNCHRONOUS OPERATIONS... 9
1.1 Using Signals.. 9
1.2 Using I/O Descriptors.. 9
1.3 Programming Concepts .. 10
1.3.1 The XIPCASYNCIO environment variable ... 10
1.3.2 The XIPCASYNCIODESCRIPTOR() Function... 10
1.3.3 The XIPCASYNCEVENTHANDLER() Function .. 10
1.3.4 Using Private Queues in a Threaded Application.. 10
1.4 Examples .. 11

1.4.1 An Example of Polling Using The X♦ IPC I/O Descriptor 11

1.4.2 An X-Windows EXAMPle using The X♦ IPC I/O Descriptor 12

2. MANUAL PAGES... 13
2.1 The XIPCASYNCIO Environment Variable ... 14
2.2 The XipcAsyncIoDescriptor() Function.. 15
2.3 The XipcAsyncEventHandler() Function ... 16

04/11/02
Revision No: 11

XIPC Technical Notes 9

1. X♦ IPC ASYNCHRONOUS OPERATIONS

A major advantage of developing multitasking and distributed applications using X IPC is that it
provides a rich set of asynchronous functionality. The benefits of such mechanisms are many, the
most significant being that they allow an application's distributed processes to execute concurrently
on a single multitasking platform as well as on multiple network nodes, thus leveraging the inherent
parallelism provided by such environments.
A key step in the asynchronous execution of X IPC operations is that of completion notification. This
is the step by which X IPC notifies a process of the completion of its asynchronous X IPC operations.
On designated platforms, X IPC currently supports two completion notification methods.

1.1 Using Signals

As its default method, X IPC implements completion notification by means of the native operating
system's process signaling and interrupt mechanism. X IPC signals the involved process that an
asynchronous X IPC operation has completed. An internal X IPC signal handler, within the user process,
responds by performing the completion activity indicated for that operation (e.g., execute a user-
specified callback function). The user process then returns to whatever it was doing before being
interrupted.
The problems with employing signals for this purpose are the following:

❏ It is inherently difficult to program an application that may be interrupted by an operating
system signal at almost any point in time. This is particularly true when working within a
windowing environment such as X-Windows. Such environments are generally ill-behaved
when user signaling is present.

❏ Many operating systems provide a means for waiting on multiple I/O related events, where
each of the involved events is related to an open I/O descriptor. Employing signals as the
method of X IPC asynchronous notification precludes the possibility of multiplexing X IPC
events with operating system events. This essentially forces the developer who needs to
block concurrently on I/O events and X IPC events to do so separately, and in incompatible
ways.

1.2 Using I/O Descriptors

X IPC Version 3.0 uses a second and more generalized approach for X IPC asynchronous event
notification, that of employing file system I/O descriptors. Using I/O descriptors for notifying a
process of asynchronous X IPC events remedies the problems listed above. An explanation of the I/O
descriptor approach follows.
The major difference between signal driven notification and I/O descriptor notification lies in how
X IPC internally notifies a process that an asynchronous X IPC operation has completed. The I/O
approach alerts the process by creating an I/O event on an I/O descriptor known to the process. Just
how the process waits for and reacts to the I/O event (polling driven or interrupt driven) is left up to
the application to decide.
An application can treat the X IPC async I/O descriptor as it does any other I/O descriptor. It can set it
to be blocking or non-blocking. It can additionally multiplex it with other descriptors.
This approach has the following advantages:

04/11/02
Revision No: 11

XIPC Technical Notes 10

❏ An application's ability to react to asynchronous activity need not be signal driven.
Applications having this requirement can be coded to poll the X IPC asynchronous I/O
descriptor at set (and safe) points within the application.

 In addition, X-Windows applications can now be set to handle X IPC asynchronous events as
non-X-ToolKit events. Specifically, the XtAddInput() or XtAppAddInput()
Xt library functions can be called to add the X IPC I/O descriptor to the X-Window
environment.

❏ The X IPC Asynchronous I/O descriptor can be multiplexed with other I/O descriptors, so
that waiting for X IPC and non- X IPC events can occur in a uniform manner.

1.3 Programming Concepts

Programming to use the X IPC I/O descriptor method involves the following:

❏ The XIPC_SETOPT_ASYNCFD option.

❏ The XipcAsyncIoDescriptor() function.

❏ The XipcAsyncEventHandler() function.

1.3.1 THE XIPC_SETOPT_ASYNCFD OPTION

The default asynchronous mechanism used by X IPC is the signaling method described above. Using
the XIPC_SETOPT_ASYNCFD option directs X IPC to use the I/O descriptor method instead. This
option must be set before the process issues a call to the XipcLogin() API. Otherwise, the
default (i.e., signal) approach is used.

1.3.2 THE XipcAsyncIoDescriptor() FUNCTION

A process that is using the I/O descriptor approach for handling its asynchronous X IPC activity will
inevitably need the value of the I/O descriptor being used. This value is returned by the
XipcAsyncIoDescriptor() function call.

1.3.3 THE XipcAsyncEventHandler() FUNCTION

When a data-available event is sensed on the X IPC I/O descriptor, an application must invoke the
XipcAsyncEventHandler() function for actually processing the completed X IPC
operations. It is within this function that X IPC executes the user-specified reaction to the operation's
completion (e.g., execute a user-specified callback function).

1.3.4 USING PRIVATE QUEUES IN A THREADED APPLICATION

Private queues should be used in threaded applications so that:
♦ UNIX IPC queues will not fill up.
♦ Threads will not receive incorrect ACBs.

04/11/02
Revision No: 11

XIPC Technical Notes 11

1.4 Examples

The following examples outline the programming steps necessary when using the I/O descriptor
method of asynchronous operation notification.

1.4.1 AN EXAMPLE OF POLLING USING THE X♦ IPC I/O DESCRIPTOR

The following program outline demonstrates how to poll the X IPC asynchronous I/O descriptor.

04/11/02
Revision No: 11

VOID
main()
{
 ASYNCRESULT Acb;
 XINT xipcfd;
 VOID GotMessage();

 /*
 * Add XIPCASYNCIO to environment. It can be set to
 * any non-NULL value.
 */

XipcSetOpt(XIPC_SETOPT_ASYNCFD)

 /*
 * Login to an XIPC instance.
 */

 XipcLogin(..., ...);

 /*
 * Get the XIPC aysnc I/O descriptor.
 */

 xipcfd = XipcAsyncIoDescriptor();

 /*
 * Issue an asynchronous XIPC operation. This example uses the
 * CALLBACK option. The POST or IGNORE option could have been
 * used as well.
 */

 QueReceive(..., QUE_CALLBACK(GotMessage, &Acb));

 /*
 * Wait for a data-available event on the I/O descriptor.
 * This can be done either using the select() or poll()
 * system call. It can also involve other I/O descriptors.
 */

 select() or poll() xipcfd;

 /*
 * An XIPC asynchronous operation has completed.
 * Process it.
 */

 XipcAsyncEventHandler();

 ...

XIPC Technical Notes 12

 ...
}

VOID
GotMessage(Acb)
ASYNCRESULT *Acb;
{
 if (Acb->Api.QueReceive.RetCode >= 0)
 printf("Got message: %s\n", Acb->Api.QueReceive.MsgBuf);
}

1.4.2 AN X-WINDOWS EXAMPLE USING THE X♦ IPC I/O DESCRIPTOR

The following program outline demonstrates how to use the X IPC asynchronous I/O descriptor within
an X-Windows application.

VOID
main()
{
 ASYNCRESULT Acb;
 XINT xipcfd;
 VOID GotMessage();
 XtInputCallbackProc MyXtCallBack();

 /*
 * Add XIPCASYNCIO to environment. It can be set to
 * any non-NULL value.
 */

XipcSetOpt(XIPC_SETOPT_ASYNCFD)
 /*
 * Login to an XIPC instance.
 */

 XipcLogin(..., ...);

 /*
 * Get the XIPC aysnc I/O descriptor.
 */

 xipcfd = XipcAsyncIoDescriptor();

 /*
 * Register the xipcfd I/O descriptor with the X-ToolKit.
 * XtAppAddInput() could have been used as well.
 * The condition argument should be XtInputReadMask.
 */

 XtAddInput(xipcfd, XtInputReadMask, MyXtCallBack, NULL);

 /*
 * Issue an asynchronous XIPC operation. This example uses the
 * CALLBACK option. The POST or IGNORE option could have been
 * used as well.
 */

 QueReceive(..., QUE_CALLBACK(GotMessage, &Acb));

 /*
 * Start the application.
 */

04/11/02
Revision No: 11

XIPC Technical Notes 13

 XtMainLoop();
}

XtInputCallbackProc
MyXtCallBack(ClientData, Fd, XtId)
XtPointer ClientData;
XINT Fd;
XtInputId XtId;
{
 /*
 * Process the XIPC event.
 */

 XipcAsyncEventHandler();
}

VOID
GotMessage(Acb)
ASYNCRESULT *Acb;
{
 if (Acb->Api.QueReceive.RetCode >= 0)
 printf("Got message: %s\n", Acb->Api.QueReceive.MsgBuf);
}

2. MANUAL PAGES

The following pages describe the programming elements needed for using the I/O descriptor method
of completion notification. These pages are also provided in the appropriate sections of the X IPC
Reference Guide.

04/11/02
Revision No: 11

XIPC Technical Notes 14

2.1 The XIPCASYNCIO Environment Variable

NAME
XIPCASYNCIO - The Asynchronous I/O Descriptor Environment Variable

DESCRIPTION
Setting the XIPCASYNCIO to any non-NULL value directs X IPC to establish the process's X IPC
asynchronous notification mechanism to use an I/O descriptor instead of a signal.
The environment variable must be set at the time that the process issues an XipcLogin()
function call, in order for the environment variable to have its effect. Otherwise, the default (i.e.
signal) mechanism is set up.

FUNCTIONS REFERENCING "XIPCASYNCIO"
XipcLogin(), XipcAsyncIoDescriptor(),
XipcAsyncEventHandler()

04/11/02
Revision No: 11

XIPC Technical Notes 15

2.2 The XipcAsyncIoDescriptor() Function

NAME
XipcAsyncIoDescriptor() - Access the Value of the X IPC Asynchronous I/O Descriptor

SYNTAX
#include "xipc.h"

XINT
XipcAsyncIoDescriptor()

PARAMETERS
None.

RETURNS
Value Description

RC >= 0 Value of the X IPC asynchronous I/O descriptor.

RC < 0 Error (see error codes below).

DESCRIPTION
XipcAsyncIoDescriptor() returns the value of the I/O descriptor being used by X IPC for notifying the
completion of asynchronous X IPC operations initiated by the calling process. This I/O descriptor is
then typically used by the process for polling on, or for multiplexing along with, other I/O descriptors.
Completion notification of an X IPC asynchronous operation is indicated as a data-available event on
the I/O descriptor. The process should react by running the XipcAsyncEventHandler() function. This
function processes the completing asynchronous X IPC operations.
The I/O descriptor may be integrated within an application's X-Window event loop environment. This
is typically accomplished by passing the I/O descriptor to the XtAddInput() ot XtAppAddInput() Xt
library function. The application must then be coded to call XipcAsyncEventHandler() at some point
within the Xt callback function associated with the I/O event.

ERRORS
Code Description

XIPC_ER_NOACCESS Process not using X IPC asynchronous I/O descriptor
method.

XIPC_ER_SYSERR An internal error has occurred while processing the request.

04/11/02
Revision No: 11

XIPC Technical Notes 16

2.3 The XipcAsyncEventHandler() Function

NAME
XipcAsyncEventHandler() - Process Completing X IPC Asynchronous Operations

SYNTAX
#include "xipc.h"

XINT
XipcAsyncEventHandler()

PARAMETERS
None.

RETURNS
Value Description

RC >= 0 Success.

RC < 0 Error (see error codes below).

DESCRIPTION
XipcAsyncEventHandler() processes completing asynchronous X IPC operations and reads all data on
the X IPC async I/O descriptor. The function should be executed when a process is notified that one of
its asynchronous X IPC operations is complete. This generally occurs following the occurrence of a
"data ready" event on the X IPC asynchronous I/O descriptor.
The call to XipcAsyncEventHandler() may be placed within the main-line logic, within a signal
handler or within an X-Windows event handler.
Note that XipcAsyncEventHandler() blocks if called when there are no outstanding AEBs; therefore,
don’t call this function until the select() call returns, indicating "data ready." Refer to the
previous X-Windows example for a program outline.
The XipcAsyncEventHandler() function should only be used when the process has chosen the I/O
descriptor method of asynchronous notification by setting the XIPCASYNCIO environment variable.

ERRORS
Code Description

XIPC_ER_NOACCESS Process not using X IPC asynchronous I/O descriptor
method.

XIPC_ER_SYSERR An internal error has occurred while processing the request.

04/11/02
Revision No: 11

XIPC Technical Notes 17

USING EVENT OBJECTS
 FOR ASYNCHRONOUS OPERATIONS

ON WINDOWS NT/WINDOWS 95

TABLE OF CONTENTS

1. X♦ IPC ASYNCHRONOUS OPERATIONS... 18
1.1 Using Event Objects ... 18
1.2 Programming Concepts .. 18
1.2.1 The XIPCASYNCEVENTOBJECT() Function.. 18
1.2.2 The XIPCASYNCEVENTHANDLER() Function ... 18
1.3 Examples .. 19
1.3.1 An Example of Polling Using The X♦ IPC EVENT OBJECTS.............................. 19

1.4 The XipcAsyncEventObject() Function ... 20
1.5 The XipcAsyncEventHandler() Function ... 21

04/11/02
Revision No: 11

XIPC Technical Notes 18

1. X♦ IPC ASYNCHRONOUS OPERATIONS

A major advantage of developing multitasking and distributed applications using X IPC is that it
provides a rich set of asynchronous functionality. The benefits of such mechanisms are many, the
most significant being that they allow an application's distributed processes to execute concurrently
on a single multitasking platform as well as on multiple network nodes, thus leveraging the inherent
parallelism provided by such environments.
A key step in the asynchronous execution of X IPC operations is that of completion notification. This
is the step by which X IPC notifies a process of the completion of its asynchronous X IPC operations.

1.1 Using Event Objects

X IPC introduces a generalized approach for X IPC asynchronous event notification––the use of Event
Objects. An application can treat the X IPC async event object as it does any other Windows
NT/Windows 95 object. X IPC sets the event object to non-signaled when an X IPC function returns
before the operation has completed. When the operation is completed, X IPC sets the state as signaled.
The thread can detect the state of the object by specifying the handle of the event object returned by
the XipcAsyncEventObject function in one of the following Windows NT/Windows 95
functions: WaitForSingleObject or WaitForMultipleObjects.
The X IPC asynchronous notification event handle is maintained on a per-thread basis. A thread should
call XipcAsyncEventHandler only when it finds its own event object in a signaled state. If
a single thread wants to wait on event objects of different threads, it can do so, but it should notify the
owner of the X IPC event by some other means of IPC so that the thread can call
XipcAsyncEventHandler.

1.2 Programming Concepts

Programming to use the X IPC Event Object involves the following:

❏ The XipcAsyncEventObject() function.

❏ The XipcAsyncEventHandler() function.

1.2.1 THE XipcAsyncEventObject() FUNCTION

A process that is using the event object approach for handling its asynchronous X IPC activity will
inevitably need the value of the event object being used. This value is returned by the
XipcAsyncEventObject function call.

1.2.2 THE XipcAsyncEventHandler() FUNCTION

When a data-available event is sensed on the X IPC event object, an application must invoke the
XipcAsyncEventHandler function for actually processing the completed X IPC operations. It
is within this function that X IPC executes the user-specified reaction to the operation's completion
(e.g., execute a user-specified callback function).

04/11/02
Revision No: 11

XIPC Technical Notes 19

1.3 Examples

The following example outlines the programming steps necessary when using the Event Object
method of asynchronous operation notification.

1.3.1 AN EXAMPLE OF POLLING USING THE X♦ IPC EVENT OBJECTS

The following program outline demonstrates how to poll the X IPC asynchronous event object.
VOID
main()
{
 ASYNCRESULT Acb;
 HANDLE hAsyncNotify;
 VOID GotMessage();

 /*
 * Login to an XIPC instance.
 */

 XipcLogin(..., ...);

 /* Get the XIPC aysnc notification handle.*/

 hAsyncNotify = (HANDLE)XipcAsyncEventObject();

 /*
 * Issue an asynchronous XIPC operation. This example uses the
 * CALLBACK option. The POST or IGNORE option could have been
 * used as well.
 */

 QueReceive(..., QUE_CALLBACK(GotMessage, &Acb));

 /*
 * Wait for a data-available event.
 * Wait for either single objects or multiple objects ...
 */

 WaitForSingleObject(hAsyncNotify, INFINITE);
 /*
 * An XIPC asynchronous operation has completed.
 * Process it.
 */

 XipcAsyncEventHandler();

 ...
 ...
}

VOID
GotMessage(Acb)
ASYNCRESULT *Acb;
{
 if (Acb->Api.QueReceive.RetCode >= 0)
 printf("Got message: %s\n", Acb->Api.QueReceive.MsgBuf);
}

04/11/02
Revision No: 11

XIPC Technical Notes 20

1.4 The XipcAsyncEventObject() Function

NAME

XipcAsyncEventObject() - Access the Handle of the X IPC Asynchronous Event Object

SYNTAX

#include "xipc.h"

HANDLE
XipcAsyncEventObject()

PARAMETERS
None.

RETURNS

Value Description

RC >= 0 Success

RC < 0 Failure

DESCRIPTION
XipcAsyncEventObject() returns the handle of the event object being used by X IPC for notifying the
completion of asynchronous X IPC operations initiated by the calling process. This event object is then
typically used by the process for polling on or for multiplexing along with other event objects.

ERRORS

Code Description

XIPC_ER_NOACCESS Process not using X IPC asynchronous I/O descriptor
method.

XIPC_ER_SYSERR An internal error has occurred while processing the request.

04/11/02
Revision No: 11

XIPC Technical Notes 21

1.5 The XipcAsyncEventHandler() Function

NAME

XipcAsyncEventHandler() - Process Completing X IPC Asynchronous Operations

SYNTAX

#include "xipc.h"

XINT
XipcAsyncEventHandler()

PARAMETERS
None.

RETURNS

Value Description

RC >= 0 Success.

RC < 0 Error (see error codes below).

DESCRIPTION
XipcAsyncEventHandler() processes completing asynchronous X IPC operations.
The function should be executed when a process has determined that one of its asynchronous X IPC
operations is complete. This determination is typically accomplished via a prior call to
WaitForSingleObject(), as described in the earlier polling example.
Note that XipcAsyncEventHandler() blocks if called when there are no outstanding AEBs; therefore,
don’t call this function until async operations are complete and ready to be handled.

ERRORS

Code Description

XIPC_ER_NOACCESS User not logged in.

XIPC_ER_SYSERR An internal error has occurred while processing the request.

04/11/02
Revision No: 11

XIPC Technical Notes 22

04/11/02
Revision No: 11

Copyright © 2001; Envoy Technologies Inc. All rights reserved

This document and the software supplied with this document are the property of Envoy Technologies Inc. and are
furnished under a licensing agreement. Neither the software nor this document may be copied or transferred by any
means, electronic or mechanical, except as provided in the licensing agreement. The information in this document is
subject to change without prior notice and does not represent a commitment by Envoy Technologies Inc. or its
representatives.

Printed in United States of America

Trademarks

Envoy Technologies, Envoy XIPC, XIPC are either trademarks or registered trademarks of Envoy Technologies Inc.
Other product and company names mentioned herein might be the trademarks of their respective owners.

	Background
	The X(IPC Specific Problem
	The X(IPC Solution: The Idle User Detection Mechanism
	CONFIGURATION AND PROGRAMMING CONCEPTS
	The xipcidld Daemon Program
	STARTING xipcidld
	STOPPING xipcidld
	REGISTERING AN INSTANCE

	The XipcIdleWatch() Function
	LOG FILES

	AN EXAMPLE OF USING THE X(IPC IDLE USER DETECTION MECHANISM
	
	STARTING xipcidld
	SAMPLE USER PROGRAM

	Summary of Idle User Enhancements in X(IPC Version 3.0.1

	X(IPC ASYNCHRONOUS OPERATIONS
	Using Signals
	Using I/O Descriptors
	Programming Concepts
	THE XIPC_SETOPT_ASYNCFD OPTION
	THE XipcAsyncIoDescriptor() FUNCTION
	THE XipcAsyncEventHandler() FUNCTION
	USING PRIVATE QUEUES IN A THREADED APPLICATION

	Examples
	AN EXAMPLE OF POLLING USING THE X(IPC I/O DESCRIPTOR
	AN X-WINDOWS EXAMPLE USING THE X(IPC I/O DESCRIPTOR

	MANUAL PAGES
	The XIPCASYNCIO Environment Variable
	The XipcAsyncIoDescriptor() Function
	The XipcAsyncEventHandler() Function

	X(IPC ASYNCHRONOUS OPERATIONS
	Using Event Objects
	Programming Concepts
	THE XipcAsyncEventObject() FUNCTION
	THE XipcAsyncEventHandler() FUNCTION

	Examples
	AN EXAMPLE OF POLLING USING THE X(IPC EVENT OBJECTS

	The XipcAsyncEventObject() Function
	The XipcAsyncEventHandler() Function

